
Microprocessors (0630371)
Fall 2010/2011 – Lecture Notes # 10

Data Transfers, Addressing, and Arithmetic

Outline of the Lecture
� Operand Types.
� MOV Instruction and overlapping values.
� Zero and Sign Extension and instructions.
� LAHF and SAHF Instructions.
� XCHG Instruction.
� Direct-Offset Operands and Instructions.
� Programming Example.

Operand Types

Three basic types of operands:
� Immediate operand– a constant integer (8, 16, or 32 bits) value is encoded within the

instruction.
� Register operand – the name of a register, register name is converted to a number and encoded

within the instruction.
� Memory operand (Direct operand)– reference to a location in memory, memory address is

encoded within the instruction, or a register holds the address of a memory location
o A direct memory operand is a named reference to storage in memory.
o The named reference (label) is automatically dereferenced by the assembler.

.data
var1 BYTE 10h
.code
mov al,var1 ; AL = 10h
mov al,[var1] ; AL = 10h, this is an alternate format

MOV Instruction and overlapping values

� The given register can be modified using differently sized data.
� When one word is moved to AX, it overwrites the existing value of AL.
� When one double word is moved to EAX, it overwrites the existing value of AX.

Example
.data
OneByte BYTE 78h
oneWord WORD 1234h
oneDword DWORD 12345678h
.code
mov eax, 0 ; EAX = 00000000h
mov al, OneByte ; EAX = 00000078h
mov ax, oneWord ; EAX = 00001234h
mov eax, oneDword ; EAX = 12345678h
mov ax,0 ; EAX = 12340000h

Copying Smaller Values into Larger Ones
� What happens if we write:

.data
count WORD 1
.code
mov ecx, 0
mov cx, count; ECX is 0

Copying Smaller Values into Larger Ones
� What happens if we write:

.data
signedVal SWORD
.code
mov ecx, 0
mov cx, SignedVal; ECX is 0000FFF0h (+65520)

� The value in ECX is completely different from
mov ecx, FFFFFFFFx
mov cx, signedVal ; ECX=FFFFFFF0h (

MOVZX (Zero Extension
� When you copy a smaller value into a larger destination, the

(extends) the upper half of the destination
� There are 3 formats:

movzx r32, r/m8
movzx r32, r/m16
movzx r16, r/m8

� The destination must be a register.
Examples of MOVZX
Example 1: Register to register

mov bl,10001111b
movzx ax,bl ; zero

Example 2: Register to register
mov bx, 0A69Bh
movzx eax, bx ; EAX = 0000A69Bh
movzx edx, bl ; EDX = 0000009Bh
movzx cx, bl ; CX = 009Bh

Zero and Sign Extension
Copying Smaller Values into Larger Ones

count WORD 1

mov ecx, 0
mov cx, count; ECX is 0

Copying Smaller Values into Larger Ones

signedVal SWORD -16 ; FFF0h (-16)

mov ecx, 0
mov cx, SignedVal; ECX is 0000FFF0h (+65520)

he value in ECX is completely different from -16, we could solve the problem by writing:
mov ecx, FFFFFFFFx
mov cx, signedVal ; ECX=FFFFFFF0h (-16)

MOVZX (Zero Extension instruction)

When you copy a smaller value into a larger destination, the MOVZX
(extends) the upper half of the destination with zeros.

movzx r32, r/m8
movzx r32, r/m16
movzx r16, r/m8

The destination must be a register.

mov bl,10001111b
movzx ax,bl ; zero-extension

mov bx, 0A69Bh
movzx eax, bx ; EAX = 0000A69Bh
movzx edx, bl ; EDX = 0000009Bh
movzx cx, bl ; CX = 009Bh

mov cx, SignedVal; ECX is 0000FFF0h (+65520)
e could solve the problem by writing:

MOVZX instruction fills

Example 3: Memory to register
.data
byte1 BYTE 9Bh
word1 WORD 0A69Bh
.code
movzx eax, word1 ; EAX = 0000A69Bh
movzx edx, byte1 ; EDX = 0000009Bh
movzz cx, byte1 ; CX = 009Bh

MOVSX
� The MOVSX instruction fills the upper half of the destination with a copy of the source

operand's sign bit.
� There are 3 formats:

movsx r32, r/m8
movsx r32, r/m16
movsx r16, r/m8

� MOVSX is only used with signed integers.
� The destination must be a register.

Example 1: Register to register
mov bl,10001111b
movsx ax,bl ; sign extension

Example 2: Register to register
mov bx, 0A69Bh
movzx eax, bx ; EAX = FFFFA69Bh
movzx edx, bl ; EDX = FFFFFF9Bh
movzx cx, bl ; CX = FF9Bh

LAHF and SAHF Instructions
� Loads/Stores flag values from/to EFLAGS register
� SAHF copies the value of bits 7, 6, 4, 2, 0 of the AH register into the SF, ZF, AF, PF, and CF

respectively. This instruction was provided to make easier conversion of assembly language
program written for 8080 and 8085 to 8086.

.data
saveflags BYTE ?
.code
lahf ; load flags into AH
mov saveflags,ah ; save them in a variable
.
.
.
mov ah,saveflags ; load saved flags into AH
sahf ; copy into Flags register

byte1 BYTE 9Bh
word1 WORD 0A69Bh

movzx eax, word1 ; EAX = 0000A69Bh
edx, byte1 ; EDX = 0000009Bh

movzz cx, byte1 ; CX = 009Bh

MOVSX (Sign Extension instruction)
The MOVSX instruction fills the upper half of the destination with a copy of the source

movsx r32, r/m8
movsx r32, r/m16
movsx r16, r/m8

is only used with signed integers.
The destination must be a register.

mov bl,10001111b
movsx ax,bl ; sign extension

mov bx, 0A69Bh
movzx eax, bx ; EAX = FFFFA69Bh

edx, bl ; EDX = FFFFFF9Bh
movzx cx, bl ; CX = FF9Bh

LAHF and SAHF Instructions
Loads/Stores flag values from/to EFLAGS register into/from AH

copies the value of bits 7, 6, 4, 2, 0 of the AH register into the SF, ZF, AF, PF, and CF
respectively. This instruction was provided to make easier conversion of assembly language
program written for 8080 and 8085 to 8086.

saveflags BYTE ?

ahf ; load flags into AH
mov saveflags,ah ; save them in a variable

mov ah,saveflags ; load saved flags into AH
sahf ; copy into Flags register

The MOVSX instruction fills the upper half of the destination with a copy of the source

copies the value of bits 7, 6, 4, 2, 0 of the AH register into the SF, ZF, AF, PF, and CF
respectively. This instruction was provided to make easier conversion of assembly language

mov saveflags,ah ; save them in a variable

mov ah,saveflags ; load saved flags into AH

XCHG Instruction
XCHG destination, source

� The syntax is:
xchg reg, reg
xchg reg, mem
xchg mem, reg

� This does not require the use of a third location to swap values, making it very useful.
� The Exchange instruction exchanges the contents of the register with the contents of another

register (or) the contents of the register with the contents of the memory location. Direct
memory to memory exchanges are not supported.
� The both operands must be the same size and one of the operand must always be a register.
� No immediate operands are permitted.

Example 1:
XCHG AX, DX ; Exchange word in AX with word

in DX
XCHG BL, CH ; Exchange byte in BL with byte

in CH
XCHG AL, Money [BX] ; Exchange byte in AL with byte

; in memory at EA.
Example 2:

.Data
var1 WORD 1000h
var2 WORD 2000h
.code
xchg ax,bx ; exchange 16-bit regs
xchg ah,al ; exchange 8-bit regs
xchg var1,bx ; exchange mem, reg
xchg eax,ebx ; exchange 32-bit regs
xchg var1,var2 ; error: two memory operands

Direct-Offset Operands and Instructions
� A constant offset is added to a data label to produce an effective address (EA). The address is

dereferenced to get the value inside its memory location.
.data
arrayB BYTE 10h,20h,30h,40h
.code
mov al,arrayB+1 ; AL = 20h
mov al,[arrayB+1] ; alternative notation

� A constant offset is added to a data label to produce an effective address (EA). The address is
dereferenced to get the value inside its memory location.

.data
arrayW WORD 1000h,2000h,3000h
arrayD DWORD 1,2,3,4
.code
mov ax,[arrayW+2] ; AX = 2000h
mov ax,[arrayW+4] ; AX = 3000h
mov eax,[arrayD+4] ; EAX = 00000002h
; Will the following statements assemble?
mov ax,[arrayW-2] ; ??
mov eax,[arrayD+16] ; ??

Programming Example
TITLE Data Transfer Examples (Moves.asm)
; Chapter 4 example. Demonstration of MOV and
; XCHG with direct and direct-offset operands.
INCLUDE Irvine32.inc
.data
val1 WORD 1000h
val2 WORD 2000h
arrayB BYTE 10h,20h,30h,40h,50h
arrayW WORD 100h,200h,300h
arrayD DWORD 10000h,20000h
.code
main PROC
; MOVZX
 mov bx,0A69Bh
 movzx eax,bx ; EAX = 0000A69Bh
 movzx edx,bl ; EDX = 0000009Bh
 movzx cx,bl ; CX = 009Bh
; MOVSX
 mov bx,0A69Bh
 movsx eax,bx ; EAX = FFFFA69Bh
 movsx edx,bl ; EDX = FFFFFF9Bh
 mov bl,7Bh
 movsx cx,bl ; CX = 007Bh
; Memory-to-memory exchange:
 mov ax,val1 ; AX = 1000h
 xchg ax,val2 ; AX = 2000h, val2 = 1000h
 mov val1,ax ; val1 = 2000h
; Direct-Offset Addressing (byte array):
 mov al,arrayB ; AL = 10h
 mov al,[arrayB+1] ; AL = 20h
 mov al,[arrayB+2] ; AL = 30h
; Direct-Offset Addressing (word array):
 mov ax,arrayW ; AX = 100h
 mov ax,[arrayW+2] ; AX = 200h
; Direct-Offset Addressing (doubleword array):
 mov eax,arrayD ; EAX = 10000h
 mov eax,[arrayD+4] ; EAX = 20000h
 mov eax,[arrayD+TYPE arrayD] ; EAX = 20000h
 exit
main ENDP
END main

